Efficacy of Sodium Phenylbutyrate and Ursodoxicoltaurine Combination in Transgenic Mice Displaying Progressive Motor Neuron Degeneration Phenotype

Jamie Timmons, Joshua Cohen, Justin Klee

Amylyx Pharmaceuticals, Inc., Cambridge, Massachusetts

Poster 51

AMYLYX

BACKGROUND

- Variants in the actin polymerization protein profilin 1 (PFN1) have been implicated as a genetic cause of amyotrophic lateral sclerosis (ALS)¹
 - In vitro/silico and mouse models of ALS-associated variants in PFN1 showed increased likelihood of protein misfolding/aggregation, resulting in neuronal death¹⁻⁴
- A transgenic mouse model of ALS containing PFN1 variants has been developed that displays a progressive motor neuron degeneration phenotype³
 - Loss of upper and lower motor neurons
 - Muscle atrophy

- Weight loss
- Decreased survival

METHODS

- Wild-type (WT) or PFN1^{C71G} mice were dosed once daily for 6 weeks (5 days/week) with vehicle or 400 mg/kg of PB, TURSO, or PB&TURSO combination (Figure 2)
 - Two age cohorts were used to ensure that the motor neuron degeneration phenotype was quantifiable, with dosing beginning at 12 or 16 weeks of age
 - Each treatment group had 8 mice per sex per genotype
- At the end of treatment, neuromuscular function was assessed with electromyography (EMG) recordings of peak compound muscle action potential (CMAP)
 - CMAP is a well-established method for measuring neuromuscular function that has
- AMX0035, an oral, fixed-dose combination of sodium phenylbutyrate (PB) and ursodoxicoltaurine (TURSO, also known as taurursodiol) is hypothesized to reduce neuronal death by mitigating endoplasmic reticulum (ER) stress and mitochondrial dysfunction, which are 2 key pathways of ALS pathogenesis⁵⁻⁹
 - PB may function both as a chemical chaperone to stabilize protein folding and reduce ER stress and the unfolded protein response and as a transcriptional regulator of antiapoptotic and antioxidant proteins (Figure 1)^{10,11}
 - TURSO may stabilize the mitochondrial membrane by reducing the translocation of BAX, a cell death regulator, leading to reduced reactive oxygen species (ROS) generation and increased apoptotic threshold of the cell (Figure 1)^{8,9}

Figure 1. Proposed Mechanism of Action of PB&TURSO⁸⁻¹¹

To determine if PB&TURSO combination conferred a greater therapeutic benefit compared with vehicle and PB or TURSO as individual components in a mouse model of motor neuron degeneration

- been used in mouse models of ALS and in ALS clinical trials^{12,13}
- Stimulating electrodes were positioned on either side of the sciatic nerve at the proximal thigh, and motor response in the tibialis anterior muscle was recorded using an intramuscular needle electrode
- Two-way analysis of variance was used to test treatment and genotype effects and to identify statistically significant treatment effect differences

Figure 2. Summary of Study Design

Cohort 1		12 weeks of age Tre		atment 6 wee	eks CMAP
Cohort 2		16 weeks of age	Treatment 6 weeks		eks
Cohort 1			Cohort 2		
Mouse genotype	Treatment	Number of animals/sex	Mouse genotype	Treatment	Number of animals/sex
WT	Vehicle	8	WT	Vehicle	8
PFN1 ^{C71G}	Vehicle	8	PFN1 ^{C71G}	Vehicle	8
	PB	8		PB	8
	TURSO	8		TURSO	8
	PB&TURSO	8		PB&TURSO	8

CMAP, compound muscle action potential; PB, sodium phenylbutyrate; *PFN1*, profilin 1; TURSO, ursodoxicoltaurine; WT, wild type.

- The study included 160 mice; treatment groups were well-balanced based on age, sex, genotype, and average body weight for each sex
- In the cohort initiating treatment at 16 weeks of age, major motor function decline were observed in the vehicle-treated PFN1^{C71G} mice (Figure 4)
- In the cohort initiating treatment at 12 weeks of age, modest motor function decline were observed in the vehicle-treated PFN1^{C71G} mice (Figure 3)
 - Vehicle-treated PFN1^{C71G} mice showed a 23.4% peak CMAP reduction (67.7±5.1 mV) vs vehicle-treated WT mice (88.4±2.3 mV)
 - PB&TURSO-treated PFN1^{C71G} mice showed statistically significant partial rescue of CMAP decline relative to vehicle-treated WT mice (80.9±3.0 mV; P<.05)

Figure 3. Peak CMAP in *PFN1^{C71G}* Mutant Mice Dosed for 6 Weeks Beginning at 12 Weeks of Age (Cohort 1)

*P<.05 compared with *PFN1*^{C71G} vehicle.

CMAP, compound muscle action potential; PB, sodium phenylbutyrate; *PFN1*, profilin 1; TURSO, ursodoxicoltaurine; WT, wild type.

- A 52.2% reduction was observed in vehicle-treated PFN1^{C71G} mice (36.9±5.1 mV) versus vehicle-treated WT mice (77.4±2.5 mV)
- PB&TURSO-treated PFN1^{C71G} mice showed statistically significant partial rescue of this decline (54.6±5.7 mV; P<.05)
- Only cohorts treated with PB&TURSO demonstrated significantly different peak CMAP compared with vehicle-treated controls; treatment with PB or TURSO alone did not

Figure 4. Peak CMAP in *PFN1^{C71G}* Mutant Mice Dosed for 6 Weeks Beginning at 16 Weeks of Age (Cohort 2)

*P<.05 compared with *PFN1*^{C71G} vehicle.

CMAP, compound muscle action potential; PB, sodium phenylbutyrate; *PFN1*, profilin 1; TURSO, ursodoxicoltaurine; WT, wild type.

CONCLUSIONS

- The mouse model was representative of both mild impairment (cohort treated at 12 weeks of age) and severe impairment (cohort treated at 16 weeks of age)
- The combination of PB&TURSO significantly decreased motor function decline in a mouse model of ALS
- This benefit was only seen when combining PB&TURSO and not with individual PB or TURSO treatment

Acknowledgements

The authors would like to thank Laurent Bogdanik, PhD, Zach Beaudry, and *in vivo* services technologists at the Jackson Laboratory for their support with conducting the study.

Disclosures

JT is an employee of and has stock option ownership of Amylyx Pharmaceuticals, Inc. JC and JK are co-CEOs of and own stock in Amylyx Pharmaceuticals, Inc.

References

 Yang C, et al. Proc Natl Acad U S A. 2016;113(41):E6209-E6218.
Kiaei M, et al. Sci Rep. 2018;8(1):13102.
Fil D, et al. Hum Mol Genet. 2017;26(4):686-701.
Boopathy S, et al. Proc Natl Acad Sci U S A. 2015;112(26):7984-7989.
Manfredi G, Kawamata H. Neurobiol Dis. 2016;90:35-42.
Walker AK, Atkin JD. IUBMB Life. 2011;63(9):754-763.
Kiernan MC, et al. Nat Rev Neurol. 2021;17(2):104-118.
Rodrigues CM, Steer CJ. Expert Opin Investig Drugs. 2001;10(7):1243-1253.
Rodrigues CM, et al. PLoS One. 2010;5(2):e9135.
Zhou W, et al. J Biol Chem. 2011;286(17):14941-14951.
Pollari E, et al. J Vis Exp. 2018;(136):57741.
Sleutjes BTHM, et al. Clin Neurophysiol. 2021;132(12):3152-3159.

AMX0035 is an investigational drug in the EU and UK and not approved for use in ALS.

© 2023 Amylyx Pharmaceuticals, Inc.