Development and Preclinical Assessment of AMX0114: an Antisense Oligonucleotide Targeting Calpain-2, a Critical Effector of Axonal Degeneration

Joshua Cohen,¹ Justin Klee,¹ Evan Mizerak,¹ Jamie Timmons,¹ Tania Martianez Canales,² Femke van Veen,² Mees Eland,² Mathew Hembury,² Roxana S. Redis,² Maria Blanca Torroba,² Raymond de Wit,² Sabrina de Munnik² ¹Amylyx Pharmaceuticals, Inc., Cambridge, MA, USA; ²Charles River Laboratories, Leiden, The Netherlands

BACKGROUND

- Axonal degeneration has been increasingly recognized as a key early contributor to the clinical presentation and pathogenesis of amyotrophic lateral sclerosis (ALS)¹⁻³
- Activation of the calcium-dependent protease calpain-2 is proposed as one of the critical effectors of axonal degeneration³
- Calpain-2 has been implicated in the pathogenesis of ALS based on:
 - Findings of elevated calpain-2 mRNA in muscle samples⁴ and calpain-specific TAR DNA binding protein 43 cleavage product concentrations in postmortem spinal cord samples⁵ from people living with ALS
 - Therapeutic benefit of calpain-2 activity modulation in animal models of ALS⁶
 - The role of calpain-2 in cleaving neurofilament,³ a well-established biomarker in ALS
- Based on evidence supporting a potential benefit of calpain-2 modulation in ALS and other neurodegenerative diseases, Amylyx Pharmaceuticals developed antisense oligonucleotides (ASOs) aimed at targeting the gene encoding calpain-2 (CAPN2)

OBJECTIVES

- To quantitatively assess the capacity of CAPN2-targeted ASO candidates to inhibit CAPN2 expression
- To evaluate the neuroprotective effects of the lead ASO candidate in in vitro motor neuropathy assays

CONCLUSION

Acknowledgement The authors would like to thank Sudhir Agrawal, MSc, DPhil, Professor, University of Massachusetts Medical School for his expert opinions.

Disclosures

JC and JK are co-CEOs of and own stock in Amylyx Pharmaceuticals, Inc. EM and JT are full-time employees of Amylyx. TMC, SD, FvV, ME, MH, RSR, MBT, RdW, and SdM are employees of Charles River Laboratories, which was contracted by Amylyx to perform the experiments described herein.

EXPERIMENTS

CAPN2 Expression in Human Glutamatergic Neurons

METHOD: Screened 80 ASOs for ability to reduce CAPN2 expression in human glutamatergic neurons

- ASOs targeted to CAPN2 were applied via gymnosis to human induced pluripotent stem cell (iPSC)-derived glutamatergic neurons (ioGlutamatergic Neurons; bit.bio); neurons were then incubated for 48 hours
- CAPN2 mRNA levels were assessed by real-time quantitative polymerase chain reaction (RT-qPCR)
- Cytotoxicity was assessed by Hoechst (5 µg/mL) staining and imaging (2 days after ASO treatment)
- A total of 6 ASO candidates reduced CAPN2 messenger RNA (mRNA) levels by \geq 30% without evident cytotoxicity
- The lead ASO candidate, AMX0114, reduced CAPN2 expression by ~74%

CAPN2 Expression in Human Motor Neurons

METHOD: Assessed effect of AMX0114 on CAPN2 expression in human motor neurons

- AMX0114 was applied in varying concentrations (0.006, 0.02, 0.06, 0.2, 0.63, 2.0, 6.32, and 20 µM) by gymnosis to an iPSC-derived human spinal motor neuron cell line (iCell Motor Neurons; FUJIFILM Cellular Dynamics, Inc.); neurons were then incubated for 72 hours
- CAPN2 mRNA levels were assessed by RT-qPCR
- AMX0114 reduced CAPN2 mRNA levels in a dose-dependent manner up to 99% at the 20-µM concentration
- The potency of AMX0114 (half maximal effective concentration [EC₅₀]) was ~40 nM (**Figure 1**)

The CAPN2-targeted ASO AMX0114 showed concentration-dependent knockdown of CAPN2 mRNA (up to 99% in human motor neurons) Pretreatment with AMX0114 reduced NfL excretion and partially prevented neuritic degeneration in neurotoxic trigger-induced models of motor neuropathy Studies in additional models relevant to neurodegenerative diseases are planned to further assess the functional efficacy of AMX0114 • AMX0114 is an investigational agent not approved for use by the FDA or any other regulatory agency but is currently in IND-enabling studies

References

Presented at the 21st Annual NEALS Meeting; November 1–3, 2022

1. Moloney EB, et al. Front Neurosci. 2014;8:252. 2. Suzuki N, et al. Front Neurosci. 2020;14:194. 3. Ma M. Neurobiol Dis. 2013;60:61-79. 4. Ueyama H, et al. J Neurol Sci. 1998;155(2):163-169. 5. Yamashita T, et al. Nat Commun. 2012;3:1307. 6. Rao MV, et al. J Neurochem. 2016;137(2):253-265.

AMYLYX